Thread: Mushrooms
View Single Post
Old 05-03-2009, 11:04 AM   #20
cheferson
Registered User
iTrader: (0)
 
cheferson's Avatar
 
Join Date: Nov 2003
Location: MA
Posts: 3,630
oyster mushrooms are really amazing. They recently did a study about ridding soil of oil contamination.

From a piece of tissue the size of one tenth of your little fingernail, what we call a clone, cells can be grown exponentially into millions of pounds of mushrooms in as little as several months. More than 10% of the growing medium or "substrate" (straw, sawdust, compost, most agricultural and forest debris) can be converted into a protein- and vitamin-rich food. Not only are these mushrooms nutritious, they have demonstrated abilities in enhancing the human immune system, and they produce a slew of natural antibiotics. Yet it is the residual mycelium in that substrate that holds the greatest potential for ecological rehabilitation.

Mycelia can serve as unparalleled biological filters. When I first moved to my property, I installed an outdoor mushroom bed in a gulch leading to a saltwater beach where clams and oysters were being commercially cultivated. An inspection showed that the outflow of water from my property was jeopardizing the quality of my neighbor's shellfish with the bacteria count close to the legal limit. The following year, after the mushroom beds were colonized with mycelium, the coliform count had decreased to nearly undetectable levels. This led to the term I have coined "mycofiltration", the use of fungal mats as biological filters.

Mycelium produces extracellular enzymes and acids that break down recalcitrant molecules such as lignin and cellulose, the two primary components of woody plants. Lignin peroxidases dismantle the long chains of hydrogen and carbon, converting wood into simpler forms, on the path to decomposition. By circumstance, these same enzymes are superb at breaking apart hydrocarbons, the base structure common to oils, petroleum products, pesticides, PCBs, and many other pollutants.

For the past four years I have been working with Battelle Laboratories, a non-profit foundation, whose mission is to use science to improve environmental health. Battelle is a major player in the bioremediation industry, and widely used by the United States and other governments in finding solutions to toxic wastes. The marine science laboratory of Battelle, Sequim, Washington became interested, as their mandate is to improve the health of the marine ecosystem. Under the stewardship of Dr. Jack Word, we began a series of experiments employing the strains from my mushroom gene library, many of which were secured through collecting specimens while hiking in the old growth forests of the Olympic and Cascade mountains. We now have applied for a patent utilizing mycelial mats for bioremediation, a process we have termed "mycoremediation".

After several years, and redundant experiments to prove to naysayers that our data was valid, we have made some astonishing discoveries. (I am continually bemused that humans "discover" what nature has known all along.) The first significant study showed that a strain of Oyster mushrooms could break down heavy oil. A trial project at a vehicle storage center controlled by the Washington State Dept. of Transportation (WSDOT) enlisted the techniques from several, competing bioremediation groups. The soil was blackened with oil and reeked of aromatic hydrocarbons. We inoculated one berm of soil approximately 8 feet x 30 feet x 3 feet high with mushroom spawn while other technicians employed a variety of methods, ranging from bacteria to chemical agents. After 4 weeks, the tarps were pulled back from each test pile. The first piles employing the other techniques were unremarkable. Then the tarp was pulled from our pile, and gasps of astonishment and laughter welled up from the observers. The hydrocarbon-laden pile was bursting with mushrooms! Oyster mushrooms up to 12 inches in diameter had formed across the pile. Analyses showed that more than 95% of many of the PAH (polycyclic aromatic hydrocarbons) were destroyed, reduced to non-toxic components, and the mushrooms were also free of any petroleum products.

After 8 weeks, the mushrooms had rotted away, and then came another startling revelation. As the mushrooms rotted, flies were attracted. (Sciarid, Phorid and other "fungus gnats" commonly seek out mushrooms, engorged themselves with spores, and spread the spores to other habitats). The flies became a magnet for other insects, which in turn brought in birds. Apparently the birds brought in seeds. Soon ours was an oasis, the only pile teeming with life! We think we have found what is called a "keystone" organism, one that facilitates, cascade of other biological processes that contribute to habitat remediation. Critics, who were in favor of using plants (as in "phytoremediation") and/or bacteria, reluctantly became de facto advocates of our process since the mushrooms opened the door for this natural sequencing
cheferson is offline   Reply With Quote