03-01-2010, 06:52 PM
|
#10
|
Registered User
Join Date: Apr 2002
Posts: 5,945
|
Agreed, as I said, could be surveyor error on either plan...
interesting read tho:
As water warms it expands causing sea level to rise. Sea-level rise, which is already occurring, will become a significant problem for low-lying coastal regions (Cape Cod, coastal areas of CT, RI, MA, and NH), affecting both people and coastal wetlands. Currently, the average rate of sea-level rise on the Atlantic coast ranges from 3.5 inches per century in Boston, Massachusetts, to approximately a foot per century in coastal salt marshes in southern Massachusetts.
Different rates of sea-level rise occur at different locations due to local rates of subsidence (settling) or uplift. With the retreat of glacial ice from the region 20,000 years ago, sea coasts began to rebound (or uplift) to a greater or lesser degree from the weight of the ice. The greater the amount of ice removed, the greater the degree of rebound. While portions of the Maine coast may still be rebounding, the coastal areas to the south now appear to be subsiding. About 33 acres of land are lost on Massachusetts' Cape Cod each year- 73% due to advancing seawater and 27% to erosion. A one degree change in ocean temperature would mean a one meter rise in sea level.
The second reason for sea-level rise is the melting of glaciers and ice caps. Clear documentation exists of the recession of approximately 80% of mountain glaciers around the world. There is also limited documentation for a small reduction in the Greenland ice sheet (especially in the southern region).
A last reason for sea-level rise is human activity. As we mine water from aquifers as a source of drinking water, the aquifers recharge more slowly than we empty them, and the mined water finds it's way into the ocean. We also drain wetlands, pumping the water into drainage systems or directly into the oceans. Such direct human activity may account for a third of sea level rise per year. One result of rising sea level is that the saltwater wedge, vital to the health of an estuary, would migrate upstream, causing a shift of marine ecosystems upriver unless freshwater runoff is increased.
Sea-level rise will cause salt water to move into new areas. This is called saltwater intrusion and it could convert some areas of coastal freshwater wetlands to salt marshes. Groundwater could also be affected, as brackish water infiltrates aquifers that supply drinking water to coastal communities. Saltwater intrusion combined with low freshwater flow, could result in a higher chloride water content in important aquifer systems and water supplies. Low flow, a rise in sea level, or both could affect the water supplies in coastal regions. In addition, as sea level continues to rise, the amount of the region's coastal area subject to flooding from coastal storms will increase, especially in areas of low relief. Increases in sea level can cause dramatic changes, as higher sea levels would provide a raised base from which storm surges may sweep inland, allowing for greater and more widespread damage than would occur with lower sea levels. Even if storm strength were not increased, higher sea levels will result in more damage.
source:
Global Environmental Changes: Discovery of Estuarine Environments (DOEE)
|
|
|
|